China Standard Drive Gear Pto and Transmission Shaft Factory Steel Precision Agricultural Machinery Use Power Transmission Shaft Transmission Shaft 118 PTO Driveline

Product Description

 

Parameter specifications

 

Certification Shipment Quality material Company System Certification
IATF16949 in time high steel ISO9001

 

Company Profile

 

HangZhou Xihu (West Lake) Dis. East Port Gear Manufacturing factory is located in Zhoujia Industrial Zone, CHINAMFG Town, HangZhou, 3km away from Xihu (West Lake) Dis.qian Lake. It focuses on precision gear research, development, production and sales. The factory has obtained ISO9001: 2015 certificate, IATF16949:2016. The main export markets were North America, South America and Europe. Products can be customized and mainly includes: New Energy Motor Shaft, Oil Pump Gear, Agricultural Machinery Gear, Transmission Gear, Electric Vehicle gear, etc. We are sincerely willing to cooperate with enterprises from all over the world. 

Equipment And Main Products

Certifications

FAQ

Q1:How is the quality of your product?
A:Our product has reliable quality,  high wear life

Q2:Customization process/work flow?
Advisory – Material selection – 2D/3D Drawing – Quotation – Payment – Production – Quality Control – Package – Delivery

Q3: What is your terms of packing?
A:Generally, we pack our goods in wooden cases, If you have special request about packing, pls negotiate with us in advance, we can pack the goods as your request.

Q4:Price?
A:We will offer competitive price after receiving your drawing

Q5:What is your terms of payment?

A:30% T/T advanced, 70% T/T before shipping

Q6:What is your terms of delivery?
A: FOB

Q7:What drawing software does your company use?
A:CAXA

Q8:Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery

Q9:How about your delivery time?
A:Product can often be delivered within 40-90 days

Q10:Sample?
A:We offer paid sample.If you have sample requirements, please feel free to contact us at any time

Q11:What logistics packaging does your company use?
A:Express for urgent orders. UPS, FedEx, DHL, TNT, EMS.

Q12:Application range?
A:Automotive, medical, automation, agricultural, marine, etc.
 

Q13: How do you make our business long-term and good relationship?
A:1. We keep good quality and competitive price to ensure our customers benefit ;
   2. We respect every customer as our friend and we sincerely do business and make friends with them, 
   no matter where they come from.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Alloy Steel
Load: Drive Shaft
Stiffness & Flexibility: Stiffness / Rigid Axle
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

customized version
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pto shaft

How do manufacturers ensure the compatibility of PTO drivelines with diverse equipment?

Manufacturers employ various methods and considerations to ensure the compatibility of PTO (Power Take-Off) drivelines with diverse equipment. Here are the key factors they take into account:

1. Standardization:

– PTO drivelines are built according to standardized specifications and dimensions. Manufacturers adhere to industry standards and guidelines, such as those set by organizations like the American Society of Agricultural and Biological Engineers (ASABE) and the International Organization for Standardization (ISO). These standards define key parameters like shaft dimensions, connection types, torque ratings, and safety requirements. By following these standards, manufacturers ensure that their PTO drivelines can be easily interchanged and connected with diverse equipment that adheres to the same standards.

2. Compatibility Testing:

– Manufacturers conduct extensive compatibility testing to verify the performance and suitability of their PTO drivelines with different types of equipment. This testing involves connecting the drivelines to various implements, machines, and power sources to assess factors like power transfer efficiency, alignment, torque handling, and safety. Compatibility testing helps identify any issues or limitations that may arise when connecting the drivelines to different equipment. Manufacturers can then make necessary adjustments or recommendations to ensure optimal compatibility.

3. Application-Specific Design:

– Manufacturers often design PTO drivelines with specific applications in mind. They consider the requirements and operating conditions of various equipment categories, such as agricultural machinery, construction equipment, or industrial machinery. Manufacturers may offer different models or configurations of PTO drivelines tailored to these specific applications. For example, agricultural PTO drivelines may have features like enhanced dust resistance, rugged construction, and additional safety measures, while industrial PTO drivelines may prioritize high torque capacity and durability for heavy-duty applications. By designing drivelines with application-specific considerations, manufacturers ensure that their products meet the unique demands of diverse equipment types.

4. Consultation and Collaboration:

– Manufacturers maintain close relationships and collaborations with equipment manufacturers and suppliers. This collaboration allows them to exchange information about equipment requirements and driveline specifications. By understanding the specific needs of different equipment, manufacturers can develop PTO drivelines that align with those requirements. They may also provide technical support and guidance to equipment manufacturers regarding the selection and integration of PTO drivelines into their products. This consultation and collaboration foster compatibility and ensure that the drivelines are suitable for the intended equipment.

5. Documentation and Guidelines:

– Manufacturers provide detailed documentation, user manuals, and guidelines that outline the compatibility aspects of their PTO drivelines. These resources specify the recommended equipment types, connection methods, torque limits, and other important considerations for proper integration. Operators and equipment manufacturers can refer to these documents to ensure the compatibility of the PTO drivelines with diverse equipment. Manufacturers may also offer technical support or customer service channels to address any compatibility-related questions or concerns.

6. Ongoing Research and Development:

– Manufacturers continuously invest in research and development to improve the compatibility of their PTO drivelines with evolving equipment technologies. They stay updated with industry trends, technological advancements, and changing equipment requirements. This allows them to adapt and innovate their driveline designs, materials, and manufacturing processes to ensure ongoing compatibility with new and emerging equipment types and applications.

In summary, manufacturers ensure the compatibility of PTO drivelines with diverse equipment through standardization, compatibility testing, application-specific design, consultation and collaboration with equipment manufacturers, documentation and guidelines, and ongoing research and development. These efforts enable manufacturers to provide drivelines that effectively and safely interface with a wide range of equipment, promoting seamless integration and reliable power transfer.

pto shaft

Are there any limitations or challenges associated with using PTO driveline systems?

While PTO (Power Take-Off) driveline systems offer numerous benefits, there are also certain limitations and challenges associated with their use. Here are some of the key considerations:

1. Safety Risks:

– PTO driveline systems can pose safety risks if not handled properly. The rotating components of the driveline, such as the shafts, yokes, and universal joints, can cause serious injuries if operators come into contact with them while in motion. It is crucial to follow proper safety procedures, including the use of shields, guards, and safety devices, to prevent accidents. Adequate training and awareness about the potential hazards associated with PTO driveline systems are essential.

2. Maintenance and Lubrication:

– PTO driveline systems require regular maintenance and lubrication to ensure optimal performance and longevity. The universal joints, splines, and other moving parts need to be inspected, cleaned, and properly lubricated according to the manufacturer’s recommendations. Neglecting maintenance can lead to premature wear, increased friction, and potential failures, compromising the driveline’s efficiency and reliability.

3. Alignment and Misalignment:

– Proper alignment between the power source and the driven equipment is crucial for efficient power transfer in PTO driveline systems. Misalignment can result in increased vibration, excessive wear, and reduced power transmission efficiency. Achieving and maintaining proper alignment can be challenging, especially when connecting the driveline to equipment with varying mounting heights, angles, or misaligned driveline components. Operators need to carefully align the driveline to minimize stress and ensure smooth operation.

4. Length and Compatibility:

– PTO driveline systems need to be appropriately sized and compatible with the specific equipment and applications they are intended for. Variations in length, connection types, and torque requirements among different equipment can pose challenges in selecting the right driveline. Ensuring proper compatibility and fit between the driveline and the equipment is crucial for optimal power transmission and safety. Customization or adaptation may be necessary in certain cases, which could add complexity and cost.

5. Torque Overload and Protection:

– PTO driveline systems are susceptible to torque overload, especially when the driven equipment encounters sudden resistance or obstructions. Excessive torque can lead to driveline component failures, such as universal joint breakage or shear pin failure, potentially causing damage to the driveline or other connected components. Proper protection mechanisms, such as shear pins, slip clutches, or overload clutches, should be employed to prevent damage and ensure operator safety.

6. Noise and Vibration:

– PTO driveline systems can generate significant noise and vibration during operation. The rotating components, imbalances, misalignments, or worn-out components can contribute to increased noise levels and vibration. Excessive noise and vibration not only affect operator comfort but can also lead to component fatigue and premature wear. Employing appropriate vibration dampening techniques, balancing the driveline components, and using vibration-absorbing materials can help mitigate these issues.

7. Environmental Factors:

– PTO driveline systems may be exposed to various environmental factors, such as dust, debris, moisture, and temperature extremes. These factors can impact the driveline’s performance and longevity. Dust and debris can accumulate in the driveline components, leading to increased friction and wear. Moisture and corrosive environments can cause rust and degradation of driveline parts. Extreme temperatures can affect the lubrication properties and material integrity. Regular inspection, cleaning, and appropriate protection measures are essential to mitigate the impact of environmental factors.

In summary, while PTO driveline systems offer significant advantages, there are limitations and challenges that need to be addressed for safe and efficient operation. These include safety risks, maintenance requirements, alignment considerations, compatibility issues, torque overload protection, noise and vibration management, and the impact of environmental factors. By understanding and addressing these challenges, operators can ensure the proper functioning and longevity of PTO driveline systems.

pto shaft

What are the key components of a PTO driveline system and how do they work together?

A PTO (Power Take-Off) driveline system consists of several key components that work together to facilitate power transmission from a power source to driven equipment. Each component plays a specific role in ensuring the efficient and reliable transfer of rotational power. Let’s explore the key components of a PTO driveline system and how they work together:

1. Power Source:

The power source in a PTO driveline system is typically an engine or motor, such as the one found in a tractor or industrial machine. The power source generates rotational power, which serves as the energy source for the entire system. The power generated by the engine is harnessed and transferred to the PTO driveline for further transmission.

2. PTO Shaft:

The PTO shaft is a rotating shaft that extends from the power source to the driven equipment. It is the primary component responsible for transmitting power from the power source to the implement. The PTO shaft is connected to the power source at one end, typically through a PTO coupling, and to the driven equipment at the other end. As the power source rotates, the rotational motion is transferred along the PTO shaft to drive the implement.

3. PTO Clutch:

The PTO clutch is a mechanism that allows the operator to engage or disengage the power transfer between the power source and the driven equipment. It is usually controlled by a lever or switch within easy reach of the operator. When the PTO clutch is engaged, the power from the power source is transmitted through the PTO shaft to the implement. Conversely, disengaging the PTO clutch interrupts the power transfer, ensuring that power is only transmitted when needed. The PTO clutch provides control and safety during operation, allowing the operator to start or stop power transmission as required.

4. PTO Gearbox:

Some machinery may incorporate a PTO gearbox between the power source and the PTO shaft. The PTO gearbox is responsible for adjusting the rotational speed and torque of the power transfer. It contains a set of gears that can be switched or adjusted to modify the speed and torque output of the PTO shaft. By changing the gear ratios, the PTO gearbox allows operators to adapt the power transmission to suit different implements or tasks. This enables the use of implements that require varying rotational speeds or different levels of torque, enhancing the versatility of the PTO driveline system.

5. PTO Driven Equipment:

The driven equipment refers to the implements or machinery that receive power from the PTO driveline system. This can include a wide range of equipment, such as mowers, balers, sprayers, augers, pumps, or generators. The PTO driveline system transfers rotational power from the power source through the PTO shaft to the driven equipment, enabling them to perform their specific functions. The driven equipment may have input shafts or connections designed to receive the PTO shaft and convert the rotational power into the desired output, such as cutting, baling, spraying, or generating electricity.

These key components of a PTO driveline system work together in a coordinated manner to achieve effective power transmission. The power generated by the engine is transferred through the PTO clutch to the PTO shaft. If a PTO gearbox is present, it can adjust the speed and torque of the power before it reaches the driven equipment. The PTO shaft then transmits the rotational power to the driven equipment, allowing them to perform their intended functions. The operator has control over the power transmission process through the PTO clutch, enabling them to start or stop the power transfer as needed.

Overall, the key components of a PTO driveline system collaborate to provide a reliable and efficient means of power transmission from the power source to the driven equipment. This facilitates a wide range of agricultural and industrial applications, enhancing the functionality, versatility, and productivity of machinery in these sectors.

China Standard Drive Gear Pto and Transmission Shaft Factory Steel Precision Agricultural Machinery Use Power Transmission Shaft Transmission Shaft 118 PTO Driveline  China Standard Drive Gear Pto and Transmission Shaft Factory Steel Precision Agricultural Machinery Use Power Transmission Shaft Transmission Shaft 118 PTO Driveline
editor by CX 2024-05-03